Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Vet Sci ; 10: 1099255, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180076

RESUMO

Lysine acetylation modification is a dynamic and reversible post-translational modification, which plays an important role in the metabolism and pathogenicity of pathogenic bacteria. Vibrio alginolyticus is a common pathogenic bacterium in aquaculture, and bile salt can trigger the expression of bacterial virulence. However, little is known about the function of lysine acetylation in V. alginolyticus under bile salt stress. In this study, 1,315 acetylated peptides on 689 proteins were identified in V. alginolyticus under bile salt stress by acetyl-lysine antibody enrichment and high-resolution mass spectrometry. Bioinformatics analysis found that the peptides motif ****A*Kac**** and *******Kac****A* were highly conserved, and protein lysine acetylation was involved in regulating various cellular biological processes and maintaining the normal life activities of bacteria, such as ribosome, aminoacyl-tRNA biosynthesis, fatty acid metabolism, two-component system, and bacterial secretion system. Further, 22 acetylated proteins were also found to be related to the virulence of V. alginolyticus under bile salt stress through secretion system, chemotaxis and motility, and adherence. Finally, comparing un-treated and treated with bile salt stress lysine acetylated proteins, it was found that there were 240 overlapping proteins, and found amino sugar and nucleotide sugar metabolism, beta-Lactam resistance, fatty acid degradation, carbon metabolism, and microbial metabolism in diverse environments pathways were significantly enriched in bile salt stress alone. In conclusion, this study is a holistic analysis of lysine acetylation in V. alginolyticus under bile salt stress, especially many virulence factors have also acetylated.

3.
Front Microbiol ; 13: 816968, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35250932

RESUMO

Protein lysine acetylation is an evolutionarily conserved post-translational modification (PTM), which is dynamic and reversible, playing a crucial regulatory role in almost every aspect of metabolism, of both eukaryotes and prokaryotes. Several global lysine acetylome studies have been carried out in various bacteria, but thus far, there have been no reports of lysine acetylation for the commercially important aquatic animal pathogen Vibrio mimicus. In the present study, we used anti-Ac-K antibody beads to highly sensitive immune-affinity purification and combined high-resolution LC-MS/MS to perform the first global lysine acetylome analysis in V. mimicus, leading to the identification of 1,097 lysine-acetylated sites on 582 proteins, and more than half (58.4%) of the acetylated proteins had only one site. The analysis of acetylated modified peptide motifs revealed six significantly enriched motifs, namely, KacL, KacR, L(-2) KacL, LKacK, L(-7) EKac, and IEKac. In addition, bioinformatic assessments state clearly that acetylated proteins have a hand in many important biological processes in V. mimicus, such as purine metabolism, ribosome, pyruvate metabolism, glycolysis/gluconeogenesis, the TCA cycle, and so on. Moreover, 13 acetylated proteins were related to the virulence of V. mimicus. To sum up, this is a comprehensive analysis whole situation protein lysine acetylome in V. mimicus and provides an important foundation for in-depth study of the biological function of lysine acetylation in V. mimicus.

4.
Microb Pathog ; 162: 105356, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34915138

RESUMO

AhyI is homologous to the protein LuxI and is conserved throughout bacterial species including Aeromonas hydrophila. A. hydrophila causes opportunistic infections in fish and other aquatic organisms. Furthermore, this pathogennot only poses a great risk for the aquaculture industry, but also for human public health. AhyI (expressing acylhomoserine lactone) is responsible for the biosynthesis of autoinducer-1 (AI-1), commonly referred to as a quorum sensing (QS) signaling molecule, which plays an essential role in bacterial communication. Studying protein structure is essential for understanding molecular mechanisms of pathogenicity in microbes. Here, we have deduced a predicted structure of AhyI protein and characterized its function using in silico methods to aid the development of new treatments for controlling A.hydrophila infections. In addition to modeling AhyI, an appropriate inhibitor molecule was identified via high throughput virtual screening (HTVS) using mcule drug-like databases.The AhyI-inhibitor N-cis-octadec-9Z-enoyl-l-Homoserine lactone was selected withthe best drug score. In order to understand the pocket sites (ligand binding sites) and their interaction with the selected inhibitor, docking (predicted protein binding complex) servers were used and the selected ligand was docked with the predicted AhyI protein model. Remarkably, N-cis-octadec-9Z-enoyl-l-Homoserine lactone established interfaces with the protein via16 residues (V24, R27, F28, R31, W34, V36, D45, M77, F82, T101, R102, L103, 104, V143, S145, and V168), which are involved with regulating mechanisms of inhibition. These proposed predictions suggest that this inhibitor molecule may be used as a novel drug candidate for the inhibition of auto-inducer-1 (AI-1) activity.The N-cis-octadec-9Z-enoyl-l-Homoserine lactone inhibitor molecule was studied on cultured bacteria to validate its potency against AI-1 production. At a concentration of 40 µM, optimal inhibition efficiency of AI-1 was observedin bacterial culture media.These results suggest that the inhibitor molecule N-cis-octadec-9Z-enoyl-l-Homoserine lactone is a competitive inhibitor of AI-1 biosynthesis.


Assuntos
Aeromonas hydrophila , Proteínas de Bactérias , 4-Butirolactona/análogos & derivados , Animais , Humanos , Percepção de Quorum
5.
Front Vet Sci ; 9: 938822, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37265802

RESUMO

Vibrio alginolyticus, a Gram-negative bacterium, is an opportunistic pathogen of both marine animals and humans, resulting in significant losses in the aquaculture industry. Type III secretion system (T3SS) is a crucial virulence mechanism of V. alginolyticus. In this study, the T3SS regulatory gene exsA, which was cloned from V. alginolyticus wild-type strain HY9901, is 861 bp encoding a protein of 286 amino acids. The ΔexsA was constructed by homologous recombination and Overlap-PCR. Although there was no difference in growth between HY9901 and ΔexsA, the ΔexsA exhibited significantly decreased extracellular protease activity and biofilm formation. Besides, the ΔexsA showed a weakened swarming phenotype and an ~100-fold decrease in virulence to zebrafish. Antibiotic susceptibility testing showed the HY9901ΔexsA was more sensitive to kanamycin, minocycline, tetracycline, gentamicin, doxycycline and neomycin. Compared to HY9901 there were 541 up-regulated genes and 663 down-regulated genes in ΔexsA, screened by transcriptome sequencing. qRT-PCR and ß-galactosidase reporter assays were used to analyze the transcription levels of hop gene revealing that exsA gene could facilitate the expression of hop gene. Finally, Danio rerio, vaccinated with ΔexsA through intramuscular injection, induced a relative percent survival (RPS) value of 66.7% after challenging with HY9901 wild type strain. qRT-PCR assays showed that vaccination with ΔexsA increased the expression of immune-related genes, including GATA-1, IL6, IgM, and TNF-α in zebrafish. In summary, these results demonstrate the importance of exsA in V. alginolyticus and provide a basis for further investigations into the virulence and infection mechanism.

6.
J Proteome Res ; 20(1): 154-163, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32911932

RESUMO

It is well known that most microbial populations develop their intrinsic antibiotics resistance at low concentrations in antibiotics environments, but the factors influencing spontaneous resistance are still largely unknown. In this study, Aeromonas hydrophila strains with different resistance levels to oxytetracycline (OXY) were induced by sublethal antibiotic selection pressure, and differential expression of proteins was compared among them using iTRAQ-based quantitative proteomics. Our following bioinformatic analysis showed that energy metabolism-related proteins were downregulated, while several iron-related proteins were upregulated in high OXY-resistant strains. To further investigate the role of spontaneous OXY resistance evolution, four TonB-dependent receptor-coded genes were deleted, and their OXY susceptibility capabilities and antibiotic evolutionary assays were performed, respectively. Our results showed that the deletion of these genes did not affect the susceptibility to OXY, but showed different evolution rates in the spontaneous OXY evolution compared with wild-type strain, especially for AHA_0971 and AHA_4251. Therefore, this study indicates the important role of TonB-dependent receptor proteins during the bacterial antibiotics resistance evolution and may provide a new prophylactic strategy against the development of antibiotic resistance.


Assuntos
Aeromonas hydrophila , Oxitetraciclina , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana/genética , Oxitetraciclina/farmacologia
7.
Fish Shellfish Immunol ; 104: 202-212, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32504803

RESUMO

The present study was conducted to evaluate the effects of marine polysaccharides from seaweed Enteromorpha on growth performance, immune responses, intestinal morphology and microbial community in the banana shrimp Fenneropenaeus merguiensis. Two thousand and four hundred juvenile shrimps with an average body weight of 2.18 ± 0.06 g were fed for 42 d with diets containing different levels of Enteromorpha polysaccharides (EPS): 0 (control), 1, 2 and 3 g/kg as treatment groups, each of group was replicated three times with two hundred shrimps per replicate. Dietary supplementation of 1 g/kg EPS showed a consistent improvement in the final weight, weight gain, average daily gain rate (ADGR) and specific growth rate (SGR) (P < 0.05), while showed a decrease in the feed conversion ratio (FCR) of shrimp (P < 0.05). Besides, the total anti-oxidative capacity (T-AOC), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione S-transferase (GST), lysozyme (Lyz), alkaline phosphatase (ALP), and phenoloxidase (PO) activities in hemolymph were enhanced by dietary supplementation of 1 g/kg EPS (P < 0.05), while it reduced the hemolymph MDA content (P < 0.05). Shrimp fed 1 g/kg EPS supplemented diets up-regulated FmLyz, FmSOD5 and FmCLAP gene expression level of hepatopancreas and gill (P < 0.05), and also improved the intestinal FmLC2, FmLyz, FmSOD5 and FmCLAP gene expression levels (P < 0.05). In addition, shrimp fed diets containing 1 g/kg EPS increased the villus width (P < 0.05) and resulted in a higher villus surface area (P < 0.05). According to 16S rRNA sequencing results, dietary supplementation of 1 g/kg EPS tended to increase the relative abundance of Firmicutes at phylum level (P = 0.07) and decrease the relative abundance of Vibrio at genus level (P = 0.08). There was a significant positive correlation between the relative abundance of Firmicutes and mRNA expression of intestinal immune-related genes (P < 0.05). These findings revealed that dietary 1 g/kg EPS could improve growth performance, enhance nonspecific immunity and modulate intestinal function of banana shrimp F. merguiensis.


Assuntos
Suplementos Nutricionais , Penaeidae , Alga Marinha , Ulva , Animais , Dieta , Expressão Gênica , Brânquias/imunologia , Hemolinfa/imunologia , Hepatopâncreas/imunologia , Intestinos/imunologia , Microbiota , Penaeidae/crescimento & desenvolvimento , Penaeidae/imunologia , Penaeidae/microbiologia
8.
Artigo em Inglês | MEDLINE | ID: mdl-32411620

RESUMO

Vibrio alginolyticus is a major cause of Vibriosis in farmed marine aquatic animals and has caused large economic losses to the Asian aquaculture industry in recent years. Therefore, it is necessary to control V. alginolyticus effectively. The virulence mechanism of V. alginolyticus, the Type III secretion system (T3SS), is closely related to its pathogenicity. In this study, the T3SS gene tyeA was cloned from V. alginolyticus wild-type strain HY9901 and the results showed that the deduced amino acid sequence of V. alginolyticus tyeA shared 75-83% homology with other Vibrio spp. The mutant strain HY9901ΔtyeA was constructed by Overlap-PCR and homologous recombination techniques. The HY9901ΔtyeA mutant exhibited an attenuated swarming phenotype and an ~40-fold reduction in virulence to zebrafish. However, the HY9901ΔtyeA mutant showed no difference in growth, biofilm formation and ECPase activity. Antibiotic susceptibility test was observed that wild and mutant strains were extremely susceptible to Amikacin, Minocycline, Gentamicin, Cefperazone; and resistant to oxacillin, clindamycin, ceftazidime. In contrast wild strains are sensitive to tetracycline, chloramphenicol, kanamycin, doxycycline, while mutant strains are resistant to them. qRT-PCR was employed to analyze the transcription levels of T3SS-related genes, the results showed that compared with HY9901 wild type, ΔtyeA had increased expression of vscL, vscK, vscO, vopS, vopN, vscN, and hop. Following vaccination with the mutant strain, zebrafish had significantly higher survival than controls following infection with the wild-type HY9901 (71.2% relative percent survival; RPS). Analysis of immune gene expression by qPCR showed that vaccination with HY9901ΔtyeA increased the expression of IgM, IL-1ß, IL-6, and TNF-α in zebrafish. This study provides evidence of protective efficacy of a live attenuated vaccine targeting the T3SS of V. alginolyticus which may be facilitated by up-regulated pro-inflammatory and immunoglobulin-related genes.


Assuntos
Doenças dos Peixes , Vibrioses , Animais , Antibacterianos/farmacologia , Vacinas Bacterianas/genética , Doenças dos Peixes/prevenção & controle , Vacinas Atenuadas , Vibrioses/prevenção & controle , Vibrio alginolyticus/genética , Peixe-Zebra
9.
Fish Shellfish Immunol ; 104: 123-132, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32473362

RESUMO

Vibrio alginolyticus, a Gram-negative bacterium, has been recognized as an opportunistic pathogen in marine animals as well as humans. Type III secretion system (T3SS) is critical for pathogen virulence and disease development. However, no more information is known about the C-ring component VscQ and its physiological role. In this study, gene vscQ was cloned from V. alginolyticus wild-type strain HY9901 and the mutant strain HY9901ΔvscQ was constructed by the in-frame deletion method. The HY9901ΔvscQ mutant showed an attenuated swarming phenotype and a closely 4.6-fold decrease in the virulence to Danio rerio. However, the HY9901ΔvscQ mutant showed no difference in growth, biofilm formation and ECPase activity. HY9901ΔvscQ reduces the release of LDH, NO and caspase-3 activity of infected FHM cell, which are involved in fish cell apoptosis. Deletion of gene vscQ downregulates the expression level of T3SS-related genes including vscL, vopB, hop, vscO, vscK, vopD, vcrV and vopS and flagellum-related genes (flaA and fliG). And Danio rerio vaccinated via i.m injection with HY9901ΔvscQ induced a relative percent survival (RPS) value of 71% after challenging with the wild-type HY9901. Real-time PCR assays showed that vaccination with HY9901ΔvscQ enhanced the expression of immune-related genes, including TNF-α, TLR5, IL-6R, IgM and c/ebpß in liver and spleen after vaccination, indicating that it is able to induce humoral and cell-mediated immune response in zebrafish. These results demonstrate that the HY9901ΔvscQ mutant could be used as an effective live vaccine to combat V. alginolyticus infection.


Assuntos
Vacinas Bacterianas/imunologia , Doenças dos Peixes/imunologia , Sistemas de Secreção Tipo III/imunologia , Vibrioses/veterinária , Peixe-Zebra/imunologia , Animais , Genes Bacterianos , Vacinas Atenuadas/imunologia , Vibrioses/imunologia , Vibrio alginolyticus/fisiologia
10.
Front Cell Infect Microbiol ; 10: 626574, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33614530

RESUMO

Recent studies have shown that a key strategy of many pathogens is to use post-translational modification (PTMs) to modulate host factors critical for infection. Lysine succinylation (Ksuc) is a major PTM widespread in prokaryotic and eukaryotic cells, and is associated with the regulation of numerous important cellular processes. Vibrio alginolyticus is a common pathogen that causes serious disease problems in aquaculture. Here we used the affinity enrichment method with LC-MS/MS to report the first identification of 2082 lysine succinylation sites on 671 proteins in V. alginolyticus, and compared this with the lysine acetylation of V. alginolyticus in our previous work. The Ksuc modification of SodB and PEPCK proteins were further validated by Co-immunoprecipitation combined with Western blotting. Bioinformatics analysis showed that the identified lysine succinylated proteins are involved in various biological processes and central metabolism pathways. Moreover, a total of 1,005 (25.4%) succinyl sites on 502 (37.3%) proteins were also found to be acetylated, which indicated that an extensive crosstalk between acetylation and succinylation in V. alginolyticus occurs, especially in three central metabolic pathways: glycolysis/gluconeogenesis, TCA cycle, and pyruvate metabolism. Furthermore, we found at least 50 (7.45%) succinylated virulence factors, including LuxS, Tdh, SodB, PEPCK, ClpP, and the Sec system to play an important role in bacterial virulence. Taken together, this systematic analysis provides a basis for further study on the pathophysiological role of lysine succinylation in V. alginolyticus and provides targets for the development of attenuated vaccines.


Assuntos
Lisina , Vibrio alginolyticus , Acetilação , Cromatografia Líquida , Lisina/metabolismo , Processamento de Proteína Pós-Traducional , Espectrometria de Massas em Tandem , Vibrio alginolyticus/metabolismo , Virulência
11.
J Sci Food Agric ; 100(1): 119-128, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31441054

RESUMO

BACKGROUND: T-2 toxin (T-2) is a potent mycotoxin and a common contaminant of aquatic animal feed, posing a serious risk to health and aquatic animals. We investigated the effect of T-2 on shrimp muscle proteins using proteomics and conventional biochemical methods. Shrimp were fed a diet containing T-2 at 0-12.2 mg kg-1 for 20 days, and changes to the muscle protein composition, ATPase activities, and the sulfhydryl (SH) content and hydrophobicity of actomyosin (AM) were determined. A proteomics study of the proteins was conducted with sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), two-dimensional (2D) electrophoresis, and matrix-assisted laser desorption/ionization - time of flight mass spectrometry (MALDI-TOF/TOF MS). RESULTS: Exposure to T-2 markedly affected the muscle protein composition of shrimp in a concentration-responsive manner that displayed a diphasic effect. At a low T-2 concentration (1.2 mg kg-1 ), the levels of three major muscle proteins (myofibrillar, sarcoplasmic, and stroma) increased but at higher concentrations they declined progressively. T-2 exposure also led to a breakdown of muscle proteins as evidenced by increases in alkali-soluble protein and the surface hydrophobicity (SoANS) of AM. Thirty differentially expressed proteins were detected, 12 of which showed a concentration-response relationship with T-2 exposure. Among them, 11 homologous proteins were identified by mass spectrometry (MS), with several being key enzymes in energy metabolism. CONCLUSION: This study demonstrated that T-2 exposure at medium to high concentrations could significantly affect the protein composition and quality of shrimp muscle, and potentially some of its key metabolisms. One of the arginine kinases (spot 27) was particularly responsive to T-2 and could potentially be used as a biomarker protein for T-2 intoxication by shrimp. © 2019 Society of Chemical Industry.


Assuntos
Proteínas Musculares/química , Penaeidae/efeitos dos fármacos , Frutos do Mar/análise , Toxina T-2/toxicidade , Ração Animal/análise , Animais , Eletroforese em Gel de Poliacrilamida , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculos/química , Músculos/efeitos dos fármacos , Músculos/metabolismo , Penaeidae/química , Penaeidae/genética , Penaeidae/metabolismo , Proteômica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
12.
J Proteomics ; 211: 103543, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31669173

RESUMO

It is well known that lysine acetylation (Kace) modification is a common post-translational modification (PTM) that plays an important role in multiple biological and pathological functions in bacteria. However, few studies have focused on lysine acetylation modification in aquatic pathogens to date. In this study, the acetylome profiling of fish pathogen, Vibrio alginolyticus was investigated by combining affinity enrichment with LC MS/MS. A total of 2883 acetylation modification sites on 1178 proteins in this pathogen were identified. The Kace modification of several selected proteins were further validated by Co-immunocoprecipitation combined with Western blotting. Bioinformatics analysis showed that seven conserved motifs can be enriched among Kace peptides, and many of them were significantly enriched in metabolic processes such as biosynthesis of secondary metabolites, microbial metabolism in diverse environments, and biosynthesis of amino acids, which was similar to data previously published for V. parahaemolyticus. Moreover, we found at least 102 acetylation modified proteins predicted as virulence factors, which indicate the important role of PTM on bacterial virulence. In general, our results provide a promising starting point for further investigations of the biological role of lysine acetylation on bacterial virulence in V. alginolyticus. BIOLOGICAL SIGNIFICANCE: Lysine acetylation (Kace) modification, is well known to play important roles on diverse biological functions in prokaryotic cell, whereas few studies focused on aquatic pathogens to date. In this study, the acetylome profiling of fish pathogen, Vibrio alginolyticus was investigated by combining affinity enrichment with LC MS/MS. A total of 2883 acetylation modification sites on 1178 proteins in this pathogen were identified. The further bioinformatics analysis showed that seven conserved motifs can be enriched among Kace peptides, and many of them were significantly enriched in metabolic processes, which was similar to data previously published for V. parahemolyticus. Moreover, we found at least 102 acetylation modified proteins predicted as virulence factors, which indicate the important role of PTM on bacterial virulence. In general, our results provide a promising starting point for further investigations of the biological role of lysine acetylation on bacterial virulence in V. alginolyticus.


Assuntos
Proteoma , Vibrio alginolyticus , Acetilação , Processamento de Proteína Pós-Traducional , Proteoma/metabolismo , Espectrometria de Massas em Tandem , Vibrio alginolyticus/metabolismo , Virulência
13.
Fish Shellfish Immunol ; 92: 712-718, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31252048

RESUMO

The survival and immune responses of Litopenaeus vannamei were evaluated during white spot syndrome virus (WSSV) or Vibrio parahaemolyticus single and concurrent infections. The mortality, WSSV load, activities of 4 immune enzymes: acid phosphatase (ACP), alkaline phosphatase (AKP), peroxidase (POD) and superoxide dismutase (SOD), and the transcription of Evolutionarily Conserved Signaling Intermediate in Toll pathways of L.vannamei (LvECSIT) were quantified at 0, 3, 6, 12, 24, 48, 72 and 96 h post-infection (pi). The results showed: (i) the cumulative mortality of the co-infection group (WSSV and V. Parahaemolyticus 83%) was significantly lower than the WSSV infection group (97%) (P < 0.05) at 96 hpi; (ii) copies of WSSV in the co-infection group were significantly lower than that of the single infection group from 24 to 96 hpi (P < 0.05); (iii) ACP, AKP,POD and SOD activity in the gills of the co-infection group was higher than that of the WSSV group at12, 48 and 96 hpi (P < 0.05).The expression of LvECSIT mRNA in the co-infection group was significantly higher than in the WSSV infection group from 12 to 72 hpi (P < 0.05).The results indicate that proliferation of WSSV is inhibited by V.parahaemolyticus infection. In addition, infection with WSSV alone causes a significant reduction in some immune responses of shrimp than co-infection with WSSV and V.parahaemolyticus occurs at 26 °C. Third, LvECSIT, an essential member of TLR signaling pathway might play a crucial role in shrimp defense against WSSV - Vibrio co-infection.


Assuntos
Imunidade Inata , Penaeidae/imunologia , Vibrio parahaemolyticus/fisiologia , Vírus da Síndrome da Mancha Branca 1/fisiologia , Animais , Longevidade/imunologia , Penaeidae/microbiologia , Penaeidae/virologia
14.
Fish Shellfish Immunol ; 89: 354-360, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30959182

RESUMO

Vibrio alginolyticus is an opportunistic and halophilic Gram-negative pathogen in limiting the development of aquatic industry and affecting human health. SODs are oxidative enzymes that play a critical role in oxidative defense. In this study, an in-frame deleted mutant strain (ΔsodB) was constructed by allelic exchange mutagenesis to investigate physiological role of sodB in pathogenicity of V. alginolyticus. The results exhibited that ΔsodB showed no differences in growth compared with wild-type strain HY9901 (WT), but led to increasing in biofilm formation, ECPase activity and sensitivity to hydrogen peroxide, decreasing in swarming motility, adherence to CIK cells, SOD activity and virulence. In addition, ΔsodB induced a high antibody titer and provided a valid protection with a relative percent survival value of 86.5% without inducing clinical symptoms after challenging with WT. These results suggest that sodB is important for normal physiological function, oxidation resistance and virulence in V. alginolyticus, and ΔsodB may be considered as an effective live attenuated vaccine against V. alginolyticus.


Assuntos
Proteínas de Bactérias/genética , Vacinas Bacterianas/imunologia , Bass/imunologia , Doenças dos Peixes/prevenção & controle , Superóxido Dismutase/genética , Vibrio alginolyticus/imunologia , Vibrio alginolyticus/fisiologia , Fatores de Virulência/genética , Animais , Antioxidantes/metabolismo , Proteínas de Bactérias/metabolismo , Doenças dos Peixes/imunologia , Mutagênese , Estresse Fisiológico , Superóxido Dismutase/metabolismo , Vacinas Atenuadas/imunologia , Vibrioses/imunologia , Vibrioses/prevenção & controle , Vibrioses/veterinária , Vibrio alginolyticus/genética , Virulência , Fatores de Virulência/metabolismo
15.
Fish Shellfish Immunol ; 76: 93-100, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29427720

RESUMO

Vibrio alginolyticus, a bacterial pathogen in fish and humans, expresses a type III secretion system (T3SS) that is critical for pathogen virulence and disease development. However, little is known about the associated effectors (T3SEs) and their physiological role. In this study, the T3SE gene hopPmaJ (hop) was cloned from V. alginolyticus wild-type strain HY9901 and the mutant strain HY9901Δhop was constructed by the in-frame deletion method. The results showed that the deduced amino acid sequence of V. alginolyticus HopPmaJ shared 78-98% homology with other Vibrio spp. In addition, the HY9901Δhop mutant showed an attenuated swarming phenotype and a 2600-fold decrease in the virulence to grouper. However, the HY9901Δhop mutant showed no difference in morphology, growth, biofilm formation and ECPase activity. Finally, grouper vaccinated via intraperitoneal (IP) injection with HY9901Δhop induced a high antibody titer with a relative percent survival (RPS) value of 84% after challenging with the wild-type HY9901. Real-time PCR assays showed that vaccination with HY9901Δhop enhanced the expression of immune-related genes, including MHC-Iα, MHC-IIα, IgM, and IL-1ß after vaccination, indicating that it is able to induce humoral and cell-mediated immune response in grouper. These results demonstrate that the HY9901Δhop mutant could be used as an effective live vaccine to combat V. alginolyticus in grouper.


Assuntos
Vacinas Bacterianas/imunologia , Bass , Doenças dos Peixes/prevenção & controle , Vacinas Atenuadas/imunologia , Vibrioses/veterinária , Vibrio alginolyticus/fisiologia , Sequência de Aminoácidos , Animais , Mutação , Distribuição Aleatória , Homologia de Sequência , Vibrioses/prevenção & controle , Vibrio alginolyticus/genética , Vibrio alginolyticus/patogenicidade , Virulência
16.
Vet Microbiol ; 213: 35-41, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29292001

RESUMO

V. alginolyticus is an important opportunistic pathogen which causes vibriosis in aquatic animals. AcfA, as an accessory colonization factor, is hypothesized to be involved in the pathogenesis of infection. In this study, a mutant strain with an in-frame deletion removed nucleotides 86 to 561 of the acfA gene was constructed to reveal the role of AcfA in the physiology and virulence from V. alginolyticus. An acfA mutant showed a similar growth level, an obvious decrease in swarming motility and the activity of ECPase, a higher LD50 value by intraperitoneal injection of grouper fish compared to that of the wild-type. Furthermore, the deletion of acfA could enhance the level of biofilm formation and suppress the polar flagellum forming. The comparative proteomic analysis demonstrated the deletion mutation of acfA could up-regulate the expression of 4 proteins of p4alcd, deoD, phb and DctP, and down-regulate the expression of 8 proteins of Clp, hpV36980, ABCtp, pepD, arA, aggp, fla and ompA compared to that of the wild-type. The analysis of RT-qPCR showed the mRNA levels of DctP and deoD were significantly induced, and the mRNA levels of pepD, arA, fla and ompA were significantly reduced in acfA mutant compared with the wild-type. The results suggest that acfA may contribute to the overall success in the pathogenesis of V. alginolyticus by regulating the expression of some relevant genes.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Doenças dos Peixes/microbiologia , Regulação Bacteriana da Expressão Gênica , Vibrioses/microbiologia , Vibrio alginolyticus/genética , Animais , Proteínas de Bactérias/genética , Peixes , Flagelos , Proteômica , Deleção de Sequência , Vibrio alginolyticus/patogenicidade , Vibrio alginolyticus/fisiologia , Virulência
17.
Indian J Microbiol ; 57(4): 477-484, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29151649

RESUMO

A mutant strain of Vibiro alginolyticus with an in-frame deletion of the toxR gene was constructed to reveal the role of ToxR in the physiology and virulence of V. alginolyticus. The statistical analysis showed no significant difference in the growth ability, swarming motility, activity of extracellular protease and the virulence by injection (the value of LD50) between the wild-type and the toxR mutant. However, the deletion of toxR could decrease the level of biofilm formation. The comparative proteomic analysis demonstrated the deletion mutation of toxR could up-regulate the expression of glutamine synthetase and levansucrase, and down-regulate the expression of 10 proteins such as OmpU, DnaK, etc. These results suggest that ToxR may be involved in the early stages of infection by influencing colonization of the bacteria on the surface of the intestine through enhancing the biofilm information of V. alginolyticus via modulating the expression of glutamine synthetize, levansucrase and OmpU.

18.
Fish Shellfish Immunol ; 66: 71-77, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28487211

RESUMO

DNA vaccines had been widely used against microbial infection in animals. The use of molecular adjuvants to improve the immunogenicity of DNA vaccines has been increasingly studied in recent years. MyD88 is one of the adapter molecules to activate the signaling cascades and produces inflammatory mediators, and its immunological role and adjuvant potential which had been proved in mammals were rarely reported in fish species. In this study, plasmid pcMyD88 was constructed and the capacity of MyD88 as molecular adjuvant was explored by co-injecting with a DNA vaccine encoding AcfA against Vibrio alginolyticus infection in orange spotted grouper. The results suggested that it needed at least 7 days to transported DNA vaccine pcacfA or molecular adjuvant pcMyD88 from the injected muscle to kidney and spleens and stimulate host's immune system for later protection. The co-injection of pcMyD88 with DNA vaccine pcacfA could increase significantly specific antibody levels and the expression levels of the immune-related genes including MHCIα, MHCIIα, CD4, CD8α, IL-1ß and TNFα. Furthermore, pcMyD88 enhanced the immunoprotection of pcacfA against V. alginolyticus infection, with the significantly higher RPS of 83.3% in pcMyD88 + pcacfA group compared with that of pcacfA alone (73.3%) at challenging test of 10 weeks post vaccination. Together, these results clearly demonstrate that MyD88 is an effective adjuvant for the DNA vaccine pcacfA in orange spotted grouper.


Assuntos
Vacinas Bacterianas/imunologia , Bass , Doenças dos Peixes/prevenção & controle , Sistema Imunitário/efeitos dos fármacos , Fator 88 de Diferenciação Mieloide/farmacologia , Vacinas de DNA/imunologia , Vibrioses/veterinária , Adjuvantes Imunológicos/farmacologia , Animais , Vacinas Bacterianas/farmacologia , Doenças dos Peixes/imunologia , Sistema Imunitário/imunologia , Distribuição Aleatória , Vacinas de DNA/farmacologia , Vibrioses/imunologia , Vibrioses/prevenção & controle , Vibrio alginolyticus/imunologia
19.
Vaccine ; 34(9): 1225-31, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26562319

RESUMO

Vibrio spp. represent a serious threat to the culture of Epinephelus coioides (Orange-spotted Grouper) in Southeast Asia. In this study we used two-dimensional electrophoresis (2-DE) and Western blotting to identify common immunogenic proteins of Vibrio alginolyticus, Vibrio harveyi and Vibrio parahaemolyticus. Membranes were probed with orange-spotted grouper anti-V. alginolyticus sera and accordingly 60, 58 and 48 immunogenic protein spots were detected. By matching analysis for the three Western blotting membranes, 6 cross immunogenic spots for the three Vibrio species were identified. They were Outer membrane protein W (OmpW), dihydrolipoamide dehydrogenase (DLD), succinate dehydrogenase flavoprotein subunit(SDHA), elongation factor Ts(Ts), peptide ABC transporter periplasmic peptide-binding protein and phosphoenolpyruvate carboxykinase(PEPCK). One of the proteins, DLD, was used to evaluate the cross protective function for E. coioides with a bacterial immunization and challenge method. The relative percent survival rate of E. coioides against V. alginolyticus, V. harveyi and V. parahaemolyticus was 90%, 86% and 80%, respectively. This work may provide potential cross protective vaccine candidate antigens for three Vibrio species, and DLD may be considered as an effective cross-protective immunogen against three Vibrio species.


Assuntos
Antígenos de Bactérias/imunologia , Vacinas Bacterianas/imunologia , Bass , Proteção Cruzada , Di-Hidrolipoamida Desidrogenase/imunologia , Vibrio/enzimologia , Animais , Anticorpos Antibacterianos/sangue , Doenças dos Peixes/prevenção & controle , Proteoma , Proteínas Recombinantes/imunologia , Vibrioses/prevenção & controle , Vibrioses/veterinária
20.
Fish Shellfish Immunol ; 35(5): 1523-31, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23994282

RESUMO

Type III secretion system (T3SS) in Vibrio alginolyticus is essential for its pathogenesis. VscO's homologous proteins FliJ, InvI and YscO have been suggested to be putative chaperone escorts although its function in V. alginolyticus is unclear. To investigate the physiological role of VscO, a mutant strain of V. alginolyticus with an in-frame deletion of the vscO gene was constructed in the present study. One finding was that the mRNA expression levels of SycD, VopB and VopD proteins decreased in the ΔvscO mutant. In addition, the ΔvscO mutant showed an attenuated swarming ability and a ten-fold decrease in the virulence to fish. However, the ΔvscO mutant showed no difference in the biofilm formation and ECPase activity. Complementation of the mutant strain with the vscO gene could restore the phenotypes of the wild-type strain. Finally, the recombinant VscO protein caused a high antibody titer and an effective protection against lethal challenge with the wild-type strain V. alginolyticus. These results indicated that VscO protein has a specific role in the pathogenesis of V. alginolyticus and it may be a candidate antigen for development of a subunit vaccine against vibriosis.


Assuntos
Doenças dos Peixes/microbiologia , Doenças dos Peixes/prevenção & controle , Regulação Bacteriana da Expressão Gênica/genética , Chaperonas Moleculares/genética , Perciformes , Vibrioses/veterinária , Vibrio alginolyticus/genética , Sequência de Aminoácidos , Animais , Sistemas de Secreção Bacterianos/genética , Vacinas Bacterianas/genética , Vacinas Bacterianas/imunologia , Sequência de Bases , Biofilmes/crescimento & desenvolvimento , Clonagem Molecular , Primers do DNA/genética , Ensaio de Imunoadsorção Enzimática , Escherichia coli , Teste de Complementação Genética/veterinária , Mutagênese , Análise de Sequência de DNA/veterinária , Vibrioses/imunologia , Vibrioses/prevenção & controle , Vibrio alginolyticus/crescimento & desenvolvimento , Vibrio alginolyticus/patogenicidade , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...